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Synthesis of barium hexaferrite

by the co-precipitation method
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Fine particles of barium hexaferrite were synthesised by a chemical co-precipitation
method using acetate-nitrate (barium acetate + iron nitrate) precursors. The thermal
properties, phase composition and morphology of hexaferrite powders were studied.
Simultaneous DTA/TG results confirmed by those obtained from XRD and VSM,
indicated that the formation of barium hexaferrite occurs at a relatively low temperature of
710◦C. This temperature is affected by the Fe3+/Ba2+ molar ratio. The SEM investigations
revealed that the mean particle size of barium hexaferrite increases with increasing
calcination temperature. In this system the Fe3+/Ba2+ molar ratio of 12 (stoichiometric ratio)
is favourable. C© 2002 Kluwer Academic Publishers

1. Introduction
Barium hexaferrite, BaO · 6Fe2O3, due to its relatively
large magnetocrystalline anisotropy and good chemical
stability has been an established permanent magnetic
material since the 1950s [1]. Barium hexaferrite, in the
form of ultra-fine particles, is also a suitable candidate
for high density magnetic recording applications
[2]. Barium hexaferrite is produced mainly by a
conventional mixed oxide ceramic method which
involves the calcining of iron oxide and barium
carbonate mixtures at around 1200◦C followed by
extended milling to break up the agglomerates [3].
In order to improve the material properties, non con-
ventional routes such as the co-precipitation method
[4, 5], salt melt method [6], hydrothermal method
[7, 8] and microemulsion method [9] have also been
used to synthesise barium hexaferrite. Synthesis of
barium hexaferrite from [FeCl3 · 6H2O-BaCl2 · 2H2O],
(Fe(NO3)3 · 9H2O-BaCl2 · 2H2O] and [αFeOOH-
BaCO3] precursors using a co-precipitation method
have been reported by numerous investigators [4, 5].

In this paper synthesis of barium hexaferrite from
[Fe(NO3)3 · 9H2O-Ba(C2H3O2)2 · H2O] has been in-
vestigated. Also, the characteristics of barium hexafer-
rite produced in this system were compared with those
prepared using nitrate [Fe(NO3)3 · 9H2O-Ba(NO3)2]
precursor. The characterisation focuses on the morphol-
ogy, phase composition and thermal behaviour of the
products.

2. Experimental procedure
Aqueous solutions of iron nitrate and barium ac-
etate as well as iron and barium nitrates with various
Fe3+/Ba2+ molar ratios were co-precipitated by the

addition of NaOH at room temperature. The molar ratio
of OH−/(CH3COO− + NO−

3 ) in the acetate-nitrate sys-
tem and OH−/NO−

3 in the nitrate system were adjusted
to be 2. The co-precipitated products were calcined at
various temperatures from 700 to 1150◦C for 1 hour in
a muffle furnace. A number of calcined samples were
pressed at a pressure of 2.8 Tons/cm2 after mixing with
1% PVA and then sintered at 1250◦C for 1 hour in air.

Powder X-ray diffraction (Cu Kα radiation) was used
to analyse the phase composition. The thermal be-
haviour of the co-precipitated samples was studied
by simultaneous DTA/TG. The experiments were car-
ried out using 50 mg samples and a heating rate of
10◦C/min. Scanning electron microscopy was used to
characterise the particle morphology. Magnetic proper-
ties of the powder and sintered samples were evaluated
using VSM (at the maximum magnetic field of 14 kOe)
and permeameter, respectively.

3. Results and discussion
The DTA/TG traces for the sample synthesised in the
acetate-nitrate system with a Fe3+/Ba2+ molar ratio of
12 are given in Fig. 1. The endothermic peak, at about
100◦C, seems to be due to the loss of water from the
sample. Four exothermic peaks have also occurred at
300, 650, 710 and 1150◦C. The first exothermic peak
at 300◦C could be due to the conversion of hydroxides
to oxides [3]. The exothermic peaks at 650 and
710◦C may be attributed to the formation of barium
monoferrite (BaO · Fe2O3) and barium hexaferrite
(BaO · 6Fe2O3), respectively. The last exothermic peak
at 1150◦C could correspond to the decomposition of
barium hexaferrite according to the following reaction
as noted by Kojima [1]:
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Figure 1 DTA/TG traces of the sample synthesised in the acetate-nitrate
system with a Fe3+/Ba2+ molar ratio of 12.

BaO · 6Fe2O3 + BaO · Fe2O3 → 4Fe2O3 + Ba2Fe6O11

To aid further interpretation of the reaction processes,
the DTA analysis was supplemented by XRD analysis.
Fig. 2 shows the X-ray powder diffraction pattern for
the above sample after it was calcined at 750◦C for
1 hour. It appears that the phase composition of the
sample mainly consists of barium hexaferrite together
with a small amount of non magnetic phases such as
barium monoferrite. It is worth mentioning that the
formation of barium hexaferrite occurs at a relatively
low temperature of 710◦C which is in very good
agreement with that reported by Jacobo et al. [5].
However, higher formation temperatures have been
reported by other investigators [1, 10,11].

The intrinsic coercivity and saturation magnetisation
of the sample synthesised in the acetatenitrate system
with a Fe3+/Ba2+ molar ratio of 12 after calcination at
750◦C were 52 emu/g and 2.6 kOe, respectively (see
Fig. 3). These results also confirm the formation of
BaO · 6Fe2O3 at a relatively low temperature. Existence
of some non-ferromagnetic phases such as BaO. Fe2O3
is responsible for low value of saturation magnetisa-
tion. A bulk sample prepared from the above sample
indicated a (BH)max of 1.65 MGOe.

Table I shows the powder X-ray diffraction results
for the samples synthesised in the acetatenitrate sys-
tem with a Fe3+/Ba2+ molar ratio of 12 and then cal-
cined at various temperatures for 1 hour. It reveals that
the barium hexaferrite is the dominant phase in all

Figure 2 Powder X-ray diffraction pattern of the sample synthesised in the acetate-nitrate system with a Fe3+/Ba2+ molar ratio of 12 and then calcined
at 750◦C for 1 hour.

TABLE I Phase composition of the samples prepared in the acetate-
nitrate system with a Fe3+/Ba2+ molar ratio of 12 as a function of the
calcination temperature

Calcination temp (◦C) Phase composition

750 BaO · 6Fe2O3 + BaO · Fe2O3

900 BaO · 6Fe2O3 + BaO · Fe2O3

1050 BaO · 6Fe2O3

1150 BaO · 6Fe2O3 + αFe2O3

Figure 3 Magnetisation-Field curve of the sample synthesised in the
acetate-nitrate system with a Fe3+/Ba2+ molar ratio of 12 and then cal-
cined at 750◦C for 1 hour.

of the samples. As the calcination temperature is in-
creased from 900 to 1050◦C, there is continued phase
transformation from a multi-phase to single-phase sys-
tem. The presence of some intermediate phases such
as αFe2O3 in the sample calcined at 1150◦C sup-
ports the hypothesis of partial decomposition of bar-
ium hexaferrite at elevated temperatures [1]. This is
also in agreement with the DTA results as illustrated
in Fig. 1.

The DTA/TG traces for the sample synthesised in
the same system with a Fe3+/Ba2+ molar ratio of 10
are given in Fig. 4. It can be seen that the exothermic
peaks have shifted to higher temperatures in compari-
son with the previous sample. It may be concluded that
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Figure 4 DTA/TG traces of the sample synthesised in the acetate-nitrate
system with a Fe3+/Ba2+ molar ratio of 10.

the exothermic peak at 730◦C is in fact due to the for-
mation of barium hexaferrite and therefore, decreasing
the Fe3+/Ba2+ molar ratio from 12 to 10 results in an
increase in formation temperature of this phase.

Analysis of the XRD pattern of the sample calcined at
750◦C for 1 hour confirms the presence of barium hex-
aferrite peaks together with those for α-Fe2O3, Fig. 5.
The XRD results of the samples synthesised in the
acetate-nitrate system with Fe3+/Ba2+ molar ratios of
10 and 12 after calcination at 1050◦C for 1 hour con-
firm that the Fe3+/Ba2+ molar ratio of 12 is more con-
venient for the formation of barium hexaferrite which
contradicts the previous results [12]. This may be due
to the relatively high pH value of the aqueous solu-
tions produced in the acetate-nitrate system and hence
enhanced activity of Ba2+ ions.

A typical SEM image of the sample produced with
a Fe3+/Ba2+ molar ratio of 12 and then calcined at
1050◦C for 1 hour, indicating the plate-like particles of
the barium hexaferrite with a mean particle diameter of
3 µm, can be seen in Fig. 6. Fig. 7. shows the variation
of the mean particle size of the samples synthesised
with Fe3+/Ba2+ molar ratios of 10 and 12 as a function
of the calcination temperature.

The data reveal that the mean particle size in both
samples increases with increasing calcination temper-
ature; note the marked inflection in the curves when
the calcination temperature exceeds 950◦C. While the
particle growth behaviour in both samples is similar,
the mean particle size of the sample synthesised with
a F3+/Ba2+ molar ratio of 10 is smaller than that of 12

Figure 5 Powder X-ray diffraction pattern of the sample synthesised in the acetate-nitrate system with a Fe3+/Ba2+ molar ratio of 10 and then calcined
at 750◦C for 1 hour.

Figure 6 SEM image of the sample produced in the acetate-nitrate sys-
tems with a Fe3+/Ba2+ molar ratio of 12 and then calcined at 1050◦C
for 1 hour.

Figure 7 Variation of the mean particle diameter of barium hexaferrite
synthesised in the acetate-nitrate system with Fe3+/Ba2+ molar ratios of
10 and 12 as a function of the calcination temperature.

at elevated temperatures. In fact, the higher growth rate
of particles in the sample prepared with a Fe3+/Ba2+
molar ratio of 12 seems to be due to the formation of
barium hexaferrite in a relatively low temperature.
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T ABL E I I Phase composition of the samples prepared in the nitrate
system with Fe3+/Ba2+ molar ratios of 8 to 12 and then calcined at
950◦C for 1 hour

Fe3+/Ba2+ molar ratio Phase composition

8 BaO · 6Fe2O3 + 2BaO · 3Fe2O3 +BaO · Fe2O3

10 BaO · 6Fe2O3 + BaO · Fe2O3

11 BaO · 6Fe2O3

12 BaO · 6Fe2O3 + 2BaO · 3Fe2O3

Figure 8 DTA/TG traces of the sample synthesised in the nitrate system
with a Fe3+/Ba2+ molar ratio of 12.

There is normally an increase in saturation magneti-
sation with increasing calcination temperature because
of an increase in the proportion of the magnetic phase.
However, due to the increment of the size of particles
above the 950◦C, one would expect the coercivity to
decrease.

The DTA/TG traces obtained from the sample syn-
thesised in the nitrate system with a Fe3+/Ba2+ molar
ratio of 12 are shown in Fig. 8. It reveals that the for-
mation of barium hexaferrite in this sample occurs at
750◦C which is 40◦C higher than that of the acetate-
nitrate system.

Analysis of the powder X-ray diffraction patterns
of the samples synthesised in the above system with
Fe3+/Ba2+ molar ratio of 8 to 12 and then calcined at
950◦C for 1 hour confirms that the proportion of barium
hexaferrite is affected by the Fe3+/Ba2+ molar ratio,
Table II. The amount of barium hexaferrite increases
on increasing the Fe3+/Ba2+ molar ratio from 8 to 10
and then exhibits a maximum at 11 which contradicts
the results obtained in the acetatenitrate system. It may
be concluded that similar to other synthesis routes, in
the nitrate system excess Ba2+ ions are needed [12].

4. Conclusion
1. In the present investigation, barium hexaferrite was
successfully synthesised using acetate-nitrate precur-
sors by the co-precipitation method.

2. The barium hexaferrite can form at a relatively
low temperature of 710◦C in the acetatenitrate system
in comparison with that of the nitrate system.

3. In contrast to other processing systems, in the
acetate-nitrate system the Fe3+/Ba2+ molar ratio of 12
(stoichiometric ratio) is favourable and excess Ba2+ is
not needed.

4. In the acetate-nitrate system, the mean particle
diameter of barium hexaferrite increases from 0.4 to
3 µm when the calcination temperature increases from
750 to 1050◦C. The calcination temperature has almost
the same effect in the nitrate system.
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